Taylor Polynomials

If f has n derivatives at $a \in \mathbb{R}$ then

$$
T_{n, a} f(x)=\sum_{r=0}^{n} \frac{f^{(r)}(a)}{r!}(x-a)^{r} .
$$

There are four questions asking you to calculating Taylor polynomials and they all highlight a method that should simplify the work needed and cut down the opportunity of making an error.

1. Calculate the Taylor polynomial

$$
T_{6,0}\left(\frac{\sin x+\cos x}{1+x}\right) .
$$

Hint Multiply up so you don't have to differentiate rational functions.
2. Calculate the Taylor polynomial

$$
T_{8,0}(\sin x \cosh x) .
$$

Hint Look for a pattern in your derivatives. For the trigonometric functions $\sin x$ and $\cos x$ you return to a function related to the original function after differentiation at most 4 times. For hyperbolic functions it is after 2 differentiations. Thus for f that are products of such functions you might hope to see some connection between f and $f^{(4)}$.
3. Calculate the Taylor polynomial

$$
T_{5,0}\left(e^{\sin x}\right)
$$

Hint Let $f(x)=e^{\sin x}$ and, because of the exponential function satisfies $d e^{x} / d x=e^{x}$, look for a connection between f and $f^{(1)}$.
4. Calculate the Taylor Polynomial

$$
T_{4,0}\left(\frac{\ln (1+x)}{1+x}\right) .
$$

Hint Again look at multiplying up and writing a derivative in terms of earlier derivatives.

Error Terms

The Remainder or Error Term in approximating a function by it's Taylor Polynomial is given by

$$
R_{n, a} f(x)=f(x)-T_{n, a} f(x) .
$$

In the notes we give bounds on $R_{n, a} f(x)$ which thus tell us how well $T_{n, a} f(x)$ approximates $f(x)$. This is the subject of the next three questions. But we can also deduce something from knowing that $R_{n, a} f(x)$ is of constant sign as x varies; we get inequalities between $f(x)$ and $T_{n, a} f(x)$.
5. i. Prove that

$$
\begin{equation*}
\left|\sin x-x+\frac{x^{3}}{6}\right| \leq \frac{1}{4!}|x|^{4}, \tag{1}
\end{equation*}
$$

for all $x \in \mathbb{R}$.
Hint the left hand side is $\left|R_{3,0}(\sin x)\right|$.
ii. Deduce (without L'Hôpital's Rule) that

$$
\lim _{x \rightarrow 0} \frac{\sin x-x}{x^{3}}=-\frac{1}{6} .
$$

6. For $f(x)=\ln (1+x)$, find the Taylor polynomial $T_{5,0} f(x)$ and calculate $T_{5,0} f(0.2)$.

Use Lagrange's form of the error for the remainder to estimate the error in using $T_{5,0} f(0.2)$ to calculate $\ln 1.2$.

Hence show that

$$
0.18232000 \ldots<\ln 1.2<0.18232709 \ldots
$$

7. Use Taylor's Theorem with $f(x)=\sqrt{x}$ on $[64,66]$ and $n=1$ along with Lagrange's form of the error to show that

$$
\frac{1}{8}-\frac{1}{1024}<\sqrt{66}-8<\frac{1}{8}-\frac{1}{1458}
$$

Taylor Series

8. Calculate the Taylor Series for $x \cosh x+\sinh x$ with $a=0$.
9. Prove that the Taylor series for cosine converges to $\cos x$, i.e.

$$
\cos x=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\ldots=\sum_{r=0}^{\infty} \frac{(-1)^{r} x^{2 r}}{(2 r)!}
$$

for all $x \in \mathbb{R}$.
Additional Questions
10. Assume the function f is $n+1$ times differentiable with $f^{(n+1)}$ continuous on an open interval containing $a \in \mathbb{R}$. Prove that

$$
\begin{equation*}
\lim _{x \rightarrow a} \frac{f(x)-T_{n, a} f(x)}{(x-a)^{n}}=0 \quad \text { and } \quad \lim _{x \rightarrow a} \frac{f(x)-T_{n, a} f(x)}{(x-a)^{n+1}}=\frac{f^{(n+1)}(a)}{(n+1)!} . \tag{2}
\end{equation*}
$$

Hint Consider Lagrange's error.
Note these limits in special cases have been seen many times before.
(a) $f(x)=\sin x$ with $T_{2,0}(\sin x)=x$ is the subject of Question 5 ,
(b) $f(x)=e^{x}$ with $T_{3,0}\left(e^{x}\right)=1+x+x^{2} / 2$ is the subject of Question 9 on Sheet 3 .
(c) $f(x)=\sinh x$ with $T_{2,0}(\sinh x)=x$ is the subject of the same question. To check that earlier answer

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{\sinh x-x}{x^{3}} & =\lim _{x \rightarrow 0} \frac{\sinh x-T_{2,0}(\sinh x)}{x^{3}} \\
& =\left.\frac{1}{3!} \frac{d^{3}}{d x^{3}}(\sinh x)\right|_{x=0} \quad \text { by }(2) \\
& =\frac{1}{6} .
\end{aligned}
$$

11. i. Prove that $x^{n+1} R_{n, 0}\left(e^{x}\right) \geq 0$ for all $x \in \mathbb{R}$.

Deduce that for all $m \geq 1$ we have

$$
e^{x} \geq T_{2 m-1,0}\left(e^{x}\right)
$$

for all $x \in \mathbb{R}$, while

$$
\begin{cases}e^{x} \geq T_{2 m, 0}\left(e^{x}\right) & \text { for } x>0 \\ e^{x} \leq T_{2 m, 0}\left(e^{x}\right) & \text { for } x<0 .\end{cases}
$$

Note this answers a question in the printed lecture notes, of showing that

$$
e^{x} \geq 1+x+\frac{x^{2}}{2}+\frac{x^{3}}{6}
$$

for all $x \in \mathbb{R}$ while

$$
e^{x}>1+x+\frac{x^{2}}{2} \text { if } x>0 \quad \text { and } \quad e^{x}<1+x+\frac{x^{2}}{2} \text { if } x<0 .
$$

ii. Prove that $(-1)^{n} x^{n+1} R_{n, 0}(\ln (1+x)) \geq 0$ for all $x>-1$.

Deduce that for all $n \geq 1$,

$$
\ln (1+x) \leq T_{n, 0}(\ln (1+x))
$$

for $-1<x<0$ while if $x>0$ then

$$
\begin{cases}\ln (1+x) \leq T_{n, 0}(\ln (1+x)) & \text { for odd } n \\ \ln (1+x) \geq T_{n, 0}(\ln (1+x)) & \text { for even } n\end{cases}
$$

Note These last results for $x>0$ can be combined in

$$
T_{2 m, 0}(\ln (1+x)) \leq \ln (1+x) \leq T_{2 m+1,0}(\ln (1+x))
$$

for all $m \geq 1$. The case $m=1$ is the content of Question 6 , Sheet 7 .

